Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity.

نویسندگان

  • Latha Diwakar
  • Rajappa S Kenchappa
  • Jayasree Annepu
  • Vijayalakshmi Ravindranath
چکیده

Oxidative stress, excitotoxicity and mitochondrial dysfunction play synergistic roles in neurodegeneration. Maintenance of thiol homeostasis is important for normal mitochondrial function and dysregulation of protein thiol homeostasis by oxidative stress leads to mitochondrial dysfunction and neurodegeneration. We examined the critical roles played by the antioxidant, non-protein thiol, glutathione and related enzyme, glutaredoxin in maintaining mitochondrial function during excitotoxicity caused by beta-N-oxalyl amino-L-alanine (L-BOAA), the causative factor of neurolathyrism, a motor neuron disease involving the pyramidal system. L-BOAA causes loss of GSH and inhibition of mitochondrial complex I in lumbosacral cord of male mice through oxidation of thiol groups, while female mice are resistant. Reducing GSH levels in female mice CNS by pretreatment with diethyl maleate or L-propargyl glycine did not result in inhibition of complex I activity, unlike male mice. Further, treatment of female mice depleted of GSH with L-BOAA did not induce inhibition of complex I indicating that GSH levels were not critical for maintaining complex I activity in female mice unlike their male counterpart. Glutaredoxin, a thiol disulfide oxidoreductase helps maintain redox status of proteins and downregulation of glutaredoxin results in loss of mitochondrial complex I activity. Female mice express higher levels of glutaredoxin in certain CNS regions and downregulation of glutaredoxin using antisense oligonucleotides sensitizes them to L-BOAA toxicity seen as mitochondrial complex I loss. Ovariectomy downregulates glutaredoxin and renders female mice vulnerable to L-BOAA toxicity as evidenced by activation of AP1, loss of GSH and complex I activity indicating the important role of glutaredoxin in neuroprotection. Estrogen protects against mitochondrial dysfunction caused by excitotoxicity by maintaining cellular redox status through higher constitutive expression of glutaredoxin in the CNS. Therapeutic interventions designed to upregulate glutaredoxin may offer neuroprotection against excitotoxicity in motor neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury.

Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-beta-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and protein thiol oxidation that disrupts mitoch...

متن کامل

Down-regulation of glutaredoxin by estrogen receptor antagonist renders female mice susceptible to excitatory amino acid mediated complex I inhibition in CNS.

beta-N-oxalyl-amino-L-alanine, (L-BOAA), an excitatory amino acid, acts as an agonist of the AMPA subtype of glutamate receptors. It inhibits mitochondrial complex I in motor cortex and lumbosacral cord of male mice through oxidation of critical thiol groups, and glutaredoxin, a thiol disulfide oxido-reductase, helps maintain integrity of complex I. Since incidence of neurolathyrism is less com...

متن کامل

Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against MPTP-mediated neurodegeneration.

Incidence of Parkinson's disease is lower in women as compared with men. Although neuroprotective effect of estrogen is recognized, the underlying molecular mechanisms are unclear. MPTP (1-methyl-4-phenyl-1, 2, 3, 6, tetrahydro-pyridine), a neurotoxin that causes Parkinson's disease-like symptoms acts through inhibition of mitochondrial complex I. Administration of MPTP to male mice results in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurochemistry international

دوره 51 1  شماره 

صفحات  -

تاریخ انتشار 2007